metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dibromido- $2\kappa^2 Br$ -bis(4-methylpyridine- $1\kappa N$ { μ -2,2'-[propane-1,3-divlbis(nitrilomethylidyne)]diphenolato-1 κ^4 O,N,N',- $O':2\kappa^2 O, O'$ nickel(II) zinc(II)

Levla Tatar Yıldırım^a* and Orhan Atakol^b

^aHacettepe University, Department of Physics Engineering, 06800 Beytepe, Ankara, Turkey, and ^bAnkara University, Department of Chemistry, Ankara, Turkey Correspondence e-mail: tatar@hacettepe.edu.tr

Received 27 September 2007; accepted 3 October 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.029 Å; R factor = 0.066; wR factor = 0.206; data-to-parameter ratio = 9.6.

The molecule of the title compound, $[NiZnBr_2(C_{17}H_{16}N_2O_2) (C_6H_7N)_2$], contains a heterodinuclear arrangement. The two metal ions are bridged via phenol O atoms of the propane-1,3diylbis(nitrilomethylidyne)]diphenolate (salpd²⁻) ligand. The two bridging O atoms of salpd²⁻ and two Br atoms constitute a distorted tetrahedral coordination environment around the Zn^{II} ion, while the Ni^{II} ion has a distorted octahedral coordination environment formed by two O and two N atoms of salpd²⁻ in the equatorial plane and two N atoms of two 4methylpyridine ligands in the axial positions. In the crystal structure, weak intermolecular C-H···Br hydrogen bonds link the molecules into chains along the c axis. Weak intramolecular $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds are also present.

Related literature

For general background, see: Bertini et al. (1994). For related structures, see: Tatar et al. (2002); Tatar (2002); Tatar Yıldırım et al. (2007); Svoboda et al. (2001); Arıcı et al. (2001). For ring conformation puckering parameters, see: Cremer & Pople (1975).

V = 2976.9 (6) Å³

Mo $K\alpha$ radiation

 $0.20 \times 0.15 \times 0.15$ mm

3379 independent reflections

frequency: 120 min

intensity decay: 2%

2118 reflections with $I > 2\sigma(I)$

 $\mu = 4.16 \text{ mm}^{-1}$

T = 294 (2) K

 $R_{\rm int} = 0.050$ 3 standard reflections

Z = 4

Experimental

Crvstal data

[NiZnBr₂(C₁₇H₁₆N₂O₂)(C₆H₇N)₂] $M_r = 750.45$ Monoclinic, Cc a = 19.357 (3) Å b = 9.2130(7) Å c = 18.3269 (15) Å $\beta = 114.382 \ (10)^{\circ}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.478, \ T_{\max} = 0.536$ 3381 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	$\Delta \rho_{\rm max} = 1.30 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.206$	$\Delta \rho_{\rm min} = -1.42 \text{ e } \text{\AA}^{-3}$
S = 1.04	Absolute structure: Flack (1983),
3379 reflections	with 95 Friedel pairs
353 parameters	Flack parameter: 0.25 (7)
H-atom parameters not refined	

Table 1

Selected geometric parameters (Å, °).

Zn-Br1	2.400 (10)	Ni-O2	2.000 (10)
Zn-Br2	2.372 (3)	Ni-N1	2.054 (14)
Zn-O1	1.992 (9)	Ni-N2	2.063 (12)
Zn-O2	1.979 (10)	Ni-N3	2.180 (12)
Ni-O1	2.060 (10)	Ni-N4	2.243 (13)
O2-Zn-O1	81.7 (4)	O1-Ni-N2	170.1 (5)
O2-Zn-Br2	115.7 (3)	O2-Ni-N3	89.1 (5)
O1-Zn-Br2	120.2 (3)	N1-Ni-N3	92.1 (5)
O2-Zn-Br1	114.2 (4)	O1-Ni-N3	90.6 (4)
O1-Zn-Br1	123.3 (4)	N2-Ni-N3	90.0 (5)
Br2–Zn–Br1	101.6 (3)	O2-Ni-N4	89.8 (5)
O2-Ni-N1	169.1 (5)	N1-Ni-N4	88.9 (5)
O2-Ni-O1	79.5 (4)	O1-Ni-N4	88.5 (4)
N1-Ni-O1	89.6 (4)	N2-Ni-N4	90.8 (5)
O2-Ni-N2	90.6 (5)	N3-Ni-N4	178.7 (5)
N1-Ni-N2	100.3 (6)		

Table 2			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots \mathbf{A}$
$ \begin{array}{c} \hline C14 - H14 \cdots Br2^{i} \\ C23 - H23A \cdots Br1^{ii} \\ C24 - H24 \cdots O1 \\ C28 - H28 \cdots N2 \end{array} $	0.93 0.96 0.93 0.93	2.93 2.91 2.54 2.60	3.78 (2) 3.79 (3) 3.09 (4) 3.18 (4)	153 153 118 121
				-

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) $x, -y + 1, z + \frac{1}{2}$.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We are grateful to Hacettepe University Scientific Research Unit (grant No. 00.01.602.003) for financial support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2335).

References

- Arıcı, C., Svoboda, I., Sarı, M., Atakol, O. & Fuess, H. (2001). Acta Cryst. C57, 31-32.
- Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorg. Chem. pp. 37–102. Mill Valley: University Science Books.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Svoboda, I., Arıcı, C., Nazır, H., Durmus, Z., Atakol, O. & Fuess, H. (2001). Acta Cryst. E57, m584–m586.
- Tatar, L. (2002). Acta Cryst. E58, m231-m233.
- Tatar, L., Atakol, O. & Arıcı, C. (2002). Acta Cryst. E58, m154-m156.
- Tatar Yıldırım, L., Atakol, O. & Kavak, G. (2007). Acta Cryst. E63, m2489– m2490.

Acta Cryst. (2007). E63, m2676-m2677 [doi:10.1107/81600536807048581]

Dibromido- $2\kappa^2 Br$ -bis(4-methylpyridine- $1\kappa N$){ μ -2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato- $1\kappa^4 O$,N,N',O': $2\kappa^2 O$,O'}nickel(II)zinc(II)

L. Tatar Yildirim and O. Atakol

Comment

Zinc and nickel elements are important essential rare elements for living beings (Bertini *et al.*, 1994), in this respect the zinc and nickel compounds are very important in medicine. Some dinuclear zinc-nickel metal compounds of Schiff-base ligands have been studied in our laboratory (Tatar Yıldırım *et al.*, 2007; Tatar, 2002; Tatar *et al.*, 2002; Arıcı *et al.*, 2001). We report herein the structure of the title compound, (I), a new hetero-dinuclear [ZnBr₂Ni(salpd^{2–})(C₆H₇N)₂] complex [where salpd^{2–} is *N*,*N*-bis- (salicylidene)-1,3-propanediamine].

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles (Table 1) are generally in good agreement with the corresponding values in similar oxygen-bridged dinuclear complexes reported, previously (Tatar *et al.*, 2007; Tatar, 2002; Tatar, Atakol *et al.*, 2002; Svoboda *et al.*, 2001; Arıcı *et al.*, 2001). The two bridging O atoms of salpd2- ligand and two Br atoms constitute a distorted tetrahedral coordination environment around the Zn^{II} ion, while the Ni^{II} ion has a distorted octahedral coordination environment formed by two O and two N atoms of salpd^{2–} ligand in the equatorial plane and two N atoms of two methylpyridine ligands in the axial positions (Table 1). The Ni atom is -0.017 (2) Å away from the equatorial plane. The Zn…Ni distance is 3.062 (3) Å. The dihedral angle between (O1/Zn/O2) and (Br1/Zn/Br2) planes is 88.1 (3)°.

Rings B (Ni/O1/N1/C1/C6/C7), C (Ni/N1/N2/C8—C10) and D (Ni/O2/N2/C11/C12/C17) are not planar, having total puckering amplitudes, Q_T , of 0.190 (2), 1.143 (3) and 0.248 (2) Å, respectively [φ = 128.66 (5)°, θ = 92.56 (4)°; φ = 102.38 (6)°, θ = 85.87 (5)° and φ = 15.97 (6)°, θ = 43.44 (5)°, respectively] (Cremer & Pople, 1975). Rings B and D have flattened boat conformations, while ring A adopts a twisted conformation. Rings A (C1—C6), E (C12—C17), F (N3/C18—C22) and G (N4/C24—C28) are, of course, planar and the dihedral angles between them are A/E = 6.02 (3)° and F/G = 22.77 (2)°.

In the crystal structure, weak intermolecular C—H \cdots Br hydrogen bonds (Table 2) link the molecules into chains along the *c* axis (Fig. 2); weak intramolecular C—H \cdots O and C—H \cdots N hydrogen bonds are also present.

Experimental

For the preparation of the title compound, (I), *N*,*N*-bis(salicylidene)-1,3 -propanediamine (1.410 g, 5 mmol) was dissolved in hot EtOH (50 ml), and then added to a solution of NiCl₂·6H₂O (1.185 g, 5 mmol) in hot water (30 ml) and ammonia (10 ml, 20%). The mixture was kept on the bench for 1–2 h. The pink precipitate was filtered and dried in an oven at 423 K. This complex (0.338 g, 1 mmol) was dissolved in hot dioxane (50 ml) and 4-methylpyridine (0.5 ml), and then added to a solution of ZnBr₂ (0.226 g, 1 mmol) in hot MeOH (20 ml). The resulting mixture was set aside for 2 d and the precipitated crystals were filtered and dried on air.

Refinement

The highest peak in the final difference electron-density map is located 1.81 Å from the Br1 atom. H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Dibromido- $2\kappa^2 Br$ -bis(4-methylpyridine- $1\kappa N$){ μ -2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato- $1\kappa^4 O, N, N', O': 2\kappa^2 O, O'$ nickel(II) zinc(II)

Crystal data	
[NiZnBr ₂ (C ₁₇ H ₁₆ N ₂ O ₂)(C ₆ H ₇ N) ₂]	$F_{000} = 1504$
$M_r = 750.45$	$D_{\rm x} = 1.674 {\rm ~Mg~m}^{-3}$
Monoclinic, Cc	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: C -2yc	Cell parameters from 15 reflections
<i>a</i> = 19.357 (3) Å	$\theta = 10.2 - 11.6^{\circ}$
b = 9.2130 (7) Å	$\mu = 4.16 \text{ mm}^{-1}$
c = 18.3269 (15) Å	T = 294 (2) K
$\beta = 114.382 \ (10)^{\circ}$	Prism, pink
V = 2976.9 (6) Å ³	$0.20\times0.15\times0.15~mm$
Z = 4	

Data collection

Enraf-Nonius TurboCAD-4	
diffractometer	

non–profiled ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$h = -24 \rightarrow 0$
$T_{\min} = 0.478, T_{\max} = 0.536$	$k = -11 \rightarrow 0$
3381 measured reflections	$l = -21 \rightarrow 23$
3379 independent reflections	3 standard reflections
2118 reflections with $I > 2\sigma(I)$	every 120 min
$R_{\rm int} = 0.050$	intensity decay: 2%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters not refined
$R[F^2 > 2\sigma(F^2)] = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.1221P)^2 + 7.1119P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.206$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 1.30 \text{ e } \text{\AA}^{-3}$
3379 reflections	$\Delta \rho_{min} = -1.42 \text{ e} \text{ Å}^{-3}$
353 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 95 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.25 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinate	s and isotropic or	• equivalent i	isotropic dis	splacement	parameters	(Å-	2)
------------------------------	--------------------	----------------	---------------	------------	------------	-----	----

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.9306 (8)	0.0500 (10)	0.8991 (6)	0.0763 (6)
Br2	0.82738 (13)	0.2500 (2)	0.99821 (11)	0.0761 (6)
Zn	0.94119 (8)	0.26209 (17)	0.97905 (8)	0.0440 (4)
Ni	1.05439 (11)	0.51344 (17)	1.01890 (11)	0.0402 (4)
01	1.0376 (5)	0.3234 (10)	1.0686 (5)	0.041 (2)
O2	0.9577 (6)	0.4444 (11)	0.9314 (5)	0.045 (2)
N1	1.1532 (7)	0.5472 (14)	1.1188 (8)	0.052 (3)
N2	1.0548 (8)	0.6930 (12)	0.9518 (8)	0.051 (3)
N3	0.9881 (7)	0.6331 (12)	1.0703 (7)	0.044 (3)

N4	1.1205 (7)	0.3862 (13)	0.9650 (8)	0.050(3)
C1	1.0756 (9)	0.2743 (14)	1.1395 (9)	0.045 (4)
C2	1.0492 (11)	0.1485 (18)	1.1622 (9)	0.059 (4)
H2	1.0062	0.1023	1.1255	0.07*
C3	1.0881 (12)	0.089 (2)	1.2422 (11)	0.076 (5)
H3	1.0708	0.0052	1.2575	0.091*
C4	1.1524 (12)	0.162 (2)	1.2954 (9)	0.068 (5)
H4	1.1773	0.1271	1.3475	0.081*
C5	1.1783 (10)	0.278 (2)	1.2733 (10)	0.064 (5)
H5	1.223	0.3193	1.3099	0.077*
C6	1.1416 (8)	0.3440 (16)	1.1959 (8)	0.046 (3)
C7	1.1783 (9)	0.4710 (17)	1.1806 (9)	0.049 (4)
H7	1.2248	0.4979	1.2206	0.059*
C8	1.1958 (9)	0.678 (2)	1.1167 (11)	0.071 (5)
H8A	1.2263	0.6562	1.0875	0.085*
H8B	1.2302	0.7026	1.1712	0.085*
С9	1.1480 (11)	0.8090 (19)	1.0793 (13)	0.075 (6)
H9A	1.1794	0.8951	1.0971	0.09*
H9B	1.1083	0.8161	1.0984	0.09*
C10	1.1114 (12)	0.807 (2)	0.9876 (13)	0.076 (5)
H10A	1.0875	0.9005	0.9687	0.091*
H10B	1.1511	0.7957	0.9687	0.091*
C11	1.0092 (11)	0.7073 (16)	0.8786 (10)	0.054 (4)
H11	1.0164	0.7906	0.8539	0.065*
C12	0.9484 (8)	0.6153 (16)	0.8280 (8)	0.043 (3)
C13	0.9113 (11)	0.6499 (18)	0.7485 (11)	0.061 (4)
H13	0.928	0.7312	0.7304	0.073*
C14	0.8516 (10)	0.574 (2)	0.6936 (11)	0.065 (4)
H14	0.8291	0.6001	0.6397	0.078*
C15	0.8280 (9)	0.461 (2)	0.7228 (9)	0.064 (5)
H15	0.7861	0.4092	0.688	0.077*
C16	0.8633 (9)	0.4150 (17)	0.8041 (9)	0.053 (4)
H16	0.8454	0.3349	0.822	0.063*
C17	0.9239 (9)	0.4915 (16)	0.8546 (8)	0.043 (4)
C18	0.9394 (9)	0.7358 (16)	1.0269 (10)	0.053 (4)
H18	0.9305	0.7469	0.9733	0.064*
C19	0.9030 (10)	0.8235 (18)	1.0583 (11)	0.060 (4)
H19	0.8689	0.8915	1.0254	0.073*
C20	0.9143 (11)	0.8160 (17)	1.1361 (12)	0.065 (5)
C21	0.9650 (11)	0.7132 (18)	1.1828 (10)	0.058 (4)
H21	0.9758	0.7046	1.237	0.07*
C22	1.0002 (9)	0.6211 (19)	1.1465 (9)	0.056 (4)
H22	1.033	0.5494	1.1774	0.067*
C23	0.8732 (15)	0.914 (3)	1.1757 (14)	0.101 (8)
H23A	0.8893	0.8872	1.2309	0.151*
H23B	0.8193	0.9012	1.148	0.151*
H23C	0.8857	1.014	1.1723	0.151*
C24	1.1542 (18)	0.266 (2)	0.9967 (17)	0.096 (8)
H24	1.1477	0.2289	1.0406	0.116*

C25	1.2003 (19)	0.189 (2)	0.9673 (16)	0.117 (11)
H25A	1.2247	0.105	0.9933	0.14*
C26	1.2093 (11)	0.2337 (17)	0.9045 (12)	0.064 (5)
C27	1.174 (2)	0.355 (4)	0.8725 (18)	0.165 (18)
H27	1.1786	0.3922	0.8272	0.096 (8)*
C28	1.133 (2)	0.427 (4)	0.904 (2)	0.064 (5)
H28	1.1107	0.5146	0.8802	0.225*
C29	1.2598 (13)	0.156 (2)	0.8728 (15)	0.091 (7)
H29A	1.2554	0.201	0.8238	0.137*
H29B	1.2446	0.0561	0.8628	0.137*
H29C	1.3115	0.1613	0.9116	0.137*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0643 (12)	0.1029 (15)	0.0706 (12)	-0.0122 (10)	0.0342 (9)	0.0016 (10)
Br2	0.0633 (12)	0.1009 (15)	0.0707 (12)	-0.0110 (10)	0.0341 (9)	0.0014 (10)
Zn	0.0447 (9)	0.0470 (10)	0.0406 (8)	-0.0113 (8)	0.0177 (7)	-0.0003 (7)
Ni	0.0399 (8)	0.0403 (10)	0.0443 (8)	-0.0041 (8)	0.0215 (6)	-0.0002 (8)
01	0.035 (5)	0.043 (5)	0.037 (5)	0.000 (4)	0.008 (4)	0.003 (4)
O2	0.048 (6)	0.054 (6)	0.034 (5)	-0.008 (5)	0.017 (4)	0.008 (4)
N1	0.040 (7)	0.057 (7)	0.071 (9)	-0.018 (6)	0.034 (7)	-0.019 (7)
N2	0.064 (8)	0.032 (6)	0.075 (9)	-0.005 (6)	0.046 (8)	0.007 (6)
N3	0.037 (6)	0.048 (7)	0.058 (7)	-0.004 (5)	0.029 (5)	0.000 (6)
N4	0.043 (6)	0.045 (7)	0.068 (8)	-0.008 (6)	0.030 (6)	-0.005 (6)
C1	0.059 (9)	0.035 (8)	0.052 (9)	0.011 (7)	0.035 (8)	0.001 (6)
C2	0.073 (11)	0.055 (9)	0.045 (8)	0.005 (8)	0.022 (8)	0.005 (7)
C3	0.091 (13)	0.067 (11)	0.071 (11)	0.017 (11)	0.034 (11)	0.033 (10)
C4	0.075 (12)	0.074 (12)	0.033 (8)	0.024 (10)	0.002 (8)	0.010 (8)
C5	0.057 (11)	0.076 (12)	0.057 (10)	0.016 (9)	0.021 (8)	-0.013 (9)
C6	0.034 (7)	0.049 (8)	0.049 (8)	0.012 (6)	0.010 (6)	-0.008 (7)
C7	0.039 (8)	0.062 (9)	0.040 (8)	0.003 (7)	0.009 (6)	-0.014 (7)
C8	0.042 (9)	0.088 (13)	0.075 (11)	-0.024 (9)	0.017 (8)	0.001 (10)
C9	0.062 (11)	0.050 (10)	0.123 (17)	-0.031 (9)	0.049 (11)	-0.028 (10)
C10	0.068 (12)	0.071 (12)	0.091 (14)	-0.019 (10)	0.034 (11)	0.000 (11)
C11	0.079 (11)	0.033 (7)	0.068 (10)	0.006 (7)	0.049 (9)	0.011 (7)
C12	0.043 (8)	0.048 (8)	0.040 (7)	0.011 (7)	0.018 (6)	0.007 (6)
C13	0.074 (11)	0.052 (9)	0.069 (10)	0.033 (9)	0.042 (9)	0.033 (9)
C14	0.063 (11)	0.071 (11)	0.067 (11)	0.021 (9)	0.032 (9)	0.011 (9)
C15	0.045 (8)	0.089 (13)	0.045 (8)	0.011 (9)	0.005 (7)	0.004 (8)
C16	0.057 (9)	0.048 (9)	0.053 (8)	0.020 (7)	0.024 (8)	0.012 (7)
C17	0.044 (8)	0.055 (9)	0.029 (7)	0.026 (7)	0.016 (6)	0.011 (6)
C18	0.042 (8)	0.060 (9)	0.056 (9)	0.007 (7)	0.018 (7)	0.011 (7)
C19	0.060 (10)	0.051 (9)	0.085 (12)	0.020 (8)	0.044 (9)	0.008 (8)
C20	0.082 (13)	0.042 (9)	0.096 (13)	0.001 (9)	0.061 (11)	-0.003 (9)
C21	0.081 (12)	0.060 (10)	0.055 (9)	0.002 (9)	0.049 (9)	0.002 (8)
C22	0.050 (9)	0.069 (11)	0.053 (9)	0.007 (8)	0.026 (7)	0.012 (8)
C23	0.13 (2)	0.084 (15)	0.116 (18)	0.015 (14)	0.083 (17)	-0.027 (13)

C24	0.15 (2)	0.059 (12)	0.13 (2)	0.031 (12)	0.112 (19)	0.030 (11)
C25	0.21 (3)	0.063 (13)	0.14 (2)	0.067 (17)	0.13 (2)	0.033 (13)
C26	0.063 (11)	0.050 (9)	0.096 (13)	0.007 (8)	0.049 (10)	-0.007 (9)
C27	0.152 (2)	0.059 (12)	0.131 (2)	0.030 (12)	0.112 (19)	0.031 (11)
C28	0.065 (11)	0.051 (9)	0.096 (13)	0.007 (8)	0.049 (10)	-0.007 (9)
C29	0.084 (14)	0.079 (13)	0.127 (19)	0.001 (11)	0.060 (14)	-0.030 (13)
Geometric paran	neters (Å, °)					
Zn—Br1		2.400 (10)	C10-	-H10A	0.97	
Zn—Br2		2.372 (3)	C10-	-H10B	0.97	
Zn—O1		1.992 (9)	C11-	-H11	0.93	
Zn—O2		1.979 (10)	C12-	C13	1.37	(2)
Ni-01		2.060 (10)	C12-	C11	1.44	(2)
Ni—O2		2.000 (10)	C13-	C14	1.37	(3)
Ni—N1		2.054 (14)	C13-	-H13	0.93	
Ni—N2		2.063 (12)	C14-	-H14	0.93	
Ni—N3		2.180 (12)	C15-	C14	1.34	(3)
Ni—N4		2.243 (13)	C15-	-H15	0.93	
01—C1		1.283 (18)	C16-	C15	1.42	(2)
O2—C17		1.355 (16)	C16-	-H16	0.93	()
N1—C8		1.47 (2)	C17-	C16	1.35	(2)
N2-C10		1.46(2)	C17-	-C12	1 40	(2)
N2-C11		1.27(2)	C18-		1 35	(2)
N3-C18		1 341 (19)	C18-	-H18	0.93	(-)
N3—C22		1 321 (19)	C19-	H19	0.93	
N4-C24		1.321 (1))	C20-		1 35	(2)
N4-C28		1.29 (3)	C20-	-C23	1.53	(2)
C1-C2		$1.2^{\circ}(3)$ 1 40 (2)	C21-	-C20	1 38	(3)
C1-C6		1 42 (2)	C21-	-H21	0.93	
С2—Н2		0.93	C22-		1 41	(2)
$C_3 - C_2$		1 45 (2)	C22	_H22	0.93	(2)
C3—H3		0.93	C23-	_H23A	0.96	
C4-C3		1 39 (3)	C23-	_H23R	0.96	
C4—H4		0.93	C23-	-H23C	0.96	
C5-C4		1 32 (3)	C24-		1 41	(3)
С5—Н5		0.93	C24-	-H24	0.93	
C6—C5		1 44 (2)	C25-	_H25A	0.93	
C7—N1		1.11(2)	C26-		1 30	(3)
C7—C6		1.25(2) 1 45(2)	C26	-C27	1.30	(3)
С7—Н7		0.93	C26	-C29	1.51	(2)
C8—H8A		0.95	C20	-C28	1.31	(3)
C8—H8B		0.97	C27-	-H27	0.93	
C9—C8		1 50 (3)	C28-	-H28	0.93	
С9—Н9А		0.97	C20	_H29A	0.95	
C9—H9R		0.97	C29_	_H29B	0.96	
C9—C10		1 53 (3)	C29_	-H29C	0.96	
0^{2} 7^{2} 0^{1}		91 7 (A)		C0 110D	0.90	C
O_2 —Zn— O_1		81.7 (4)	H9A-	—су—нув	107.	0 (15)
U_2 —Zn—Br2		115.7 (3)	N2—	-010-09	114.	9(13)

O1—Zn—Br2	120.2 (3)	N2	108.5
O2—Zn—Br1	114.2 (4)	C9—C10—H10A	108.5
O1—Zn—Br1	123.3 (4)	N2-C10-H10B	108.5
Br2—Zn—Br1	101.6 (3)	C9—C10—H10B	108.5
O2—Ni—N1	169.1 (5)	H10A—C10—H10B	107.5
02—Ni—O1	79.5 (4)	N2—C11—C12	130.3 (14)
N1—Ni—O1	89.6 (4)	N2—C11—H11	114.9
O2—Ni—N2	90.6 (5)	C12—C11—H11	114.9
N1—Ni—N2	100.3 (6)	C13—C12—C17	117.2 (15)
O1—Ni—N2	170.1 (5)	C13—C12—C11	118.7 (15)
O2—Ni—N3	89.1 (5)	C17—C12—C11	124.2 (13)
N1—Ni—N3	92.1 (5)	C14—C13—C12	125.3 (16)
O1—Ni—N3	90.6 (4)	C14—C13—H13	117.4
N2—Ni—N3	90.0 (5)	С12—С13—Н13	117.4
O2—Ni—N4	89.8 (5)	C15-C14-C13	115.3 (16)
N1—Ni—N4	88.9 (5)	C15—C14—H14	122.4
O1—Ni—N4	88.5 (4)	C13—C14—H14	122.4
N2—Ni—N4	90.8 (5)	C14—C15—C16	123.7 (17)
N3—Ni—N4	178.7 (5)	C14—C15—H15	118.1
C1—O1—Zn	133.3 (10)	С16—С15—Н15	118.1
C1—O1—Ni	128.2 (9)	C17—C16—C15	117.8 (16)
Zn—O1—Ni	98.2 (4)	С17—С16—Н16	121.1
C17—O2—Zn	129.3 (10)	C15-C16-H16	121.1
C17—O2—Ni	128.4 (10)	C16—C17—O2	117.0 (14)
Zn—O2—Ni	100.6 (4)	C16—C17—C12	120.6 (13)
C7—N1—C8	118.2 (14)	O2—C17—C12	122.4 (14)
C7—N1—Ni	126.4 (11)	N3—C18—C19	122.1 (16)
C8—N1—Ni	115.3 (11)	N3—C18—H18	118.9
C11—N2—C10	117.6 (14)	C19—C18—H18	118.9
C11—N2—Ni	122.7 (11)	C18—C19—C20	122.3 (16)
C10—N2—Ni	119.7 (12)	C18—C19—H19	118.8
C22—N3—C18	117.5 (14)	С20—С19—Н19	118.8
C22—N3—Ni	122.4 (10)	C19—C20—C21	117.0 (15)
C18—N3—Ni	119.7 (10)	C19—C20—C23	124.5 (17)
C28—N4—C24	113.8 (17)	C21—C20—C23	118.5 (17)
C28—N4—Ni	124.6 (13)	C20—C21—C22	118.5 (15)
C24—N4—Ni	121.5 (13)	C20—C21—H21	120.7
01—C1—C2	117.8 (14)	C22—C21—H21	120.7
O1—C1—C6	123.0 (14)	N3—C22—C21	122.5 (15)
C2—C1—C6	119.2 (14)	N3—C22—H22	118.8
C1—C2—C3	120.8 (17)	C21—C22—H22	118.8
C1—C2—H2	119.6	C20—C23—H23A	109.5
С3—С2—Н2	119.6	С20—С23—Н23В	109.5
C4—C3—C2	117.8 (17)	H23A—C23—H23B	109.5
С4—С3—Н3	121.1	C20—C23—H23C	109.5
С2—С3—Н3	121.1	H23A—C23—H23C	109.5
C5—C4—C3	121.3 (16)	H23B—C23—H23C	109.5
C5—C4—H4	119.4	N4—C24—C25	123 (2)
C3—C4—H4	119.4	N4—C24—H24	118.7

C4—C5—C6	123.7 (16)	C25—C24—H24	118.7
С4—С5—Н5	118.2	C26—C25—C24	121.2 (19)
С6—С5—Н5	118.2	С26—С25—Н25А	119.4
C1—C6—C5	117.1 (15)	С24—С25—Н25А	119.4
C1—C6—C7	125.9 (14)	C25—C26—C27	115.5 (17)
C5—C6—C7	116.8 (14)	C25—C26—C29	122.5 (18)
N1—C7—C6	126.1 (14)	C27—C26—C29	122 (2)
N1—C7—H7	116.9	C26—C27—C28	121 (2)
С6—С7—Н7	116.9	С26—С27—Н27	119.5
N1—C8—C9	115.1 (14)	С28—С27—Н27	119.5
N1—C8—H8A	108.5	N4—C28—C27	126 (2)
С9—С8—Н8А	108.5	N4—C28—H28	116.0
N1—C8—H8B	108.5	C27—C28—H28	117.2
С9—С8—Н8В	108.5	С26—С29—Н29А	109.5
H8A—C8—H8B	107.5	С26—С29—Н29В	109.5
C8—C9—C10	114.3 (16)	H29A—C29—H29B	109.5
С8—С9—Н9А	108.7	С26—С29—Н29С	109.5
С10—С9—Н9А	108.7	H29A—C29—H29C	109.5
С8—С9—Н9В	108.7	H29B—C29—H29C	109.5
С10—С9—Н9В	108.7		
O2—Zn—O1—C1	173.2 (13)	Zn—O1—C1—C2	3(2)
Br2—Zn—O1—C1	58.2 (13)	Ni-01-C1-C2	174.3 (10)
Br1—Zn—O1—C1	-73.2 (13)	Zn-O1-C1-C6	-175.4 (10)
O2—Zn—O1—Ni	0.1 (5)	Ni-01-C1-C6	-4(2)
Br2—Zn—O1—Ni	-114.8 (3)	Zn-O2-C17-C16	9.8 (19)
Br1—Zn—O1—Ni	113.7 (4)	Ni-O2-C17-C16	172.0 (10)
O1—Zn—O2—C17	165.8 (12)	Zn—O2—C17—C12	-171.8 (10)
Br2—Zn—O2—C17	-74.7 (12)	Ni-02-C17-C12	-10 (2)
Br1—Zn—O2—C17	42.9 (13)	C7—N1—C8—C9	-138.9 (17)
O1—Zn—O2—Ni	-0.1 (5)	Ni—N1—C8—C9	39 (2)
Br2—Zn—O2—Ni	119.5 (3)	C11—N2—C10—C9	162.5 (17)
Br1—Zn—O2—Ni	-123.0 (5)	Ni—N2—C10—C9	-20 (2)
O2—Ni—O1—C1	-173.7 (12)	C10—N2—C11—C12	-179.6 (17)
N1—Ni—O1—C1	7.3 (12)	Ni—N2—C11—C12	3(2)
N3—Ni—O1—C1	-84.8 (12)	C22—N3—C18—C19	-1(2)
N4—Ni—O1—C1	96.2 (12)	Ni—N3—C18—C19	-172.9 (13)
O2—Ni—O1—Zn	-0.1 (5)	C18—N3—C22—C21	-1(2)
N1—Ni—O1—Zn	-179.1 (5)	Ni—N3—C22—C21	170.8 (12)
N3—Ni—O1—Zn	88.8 (5)	C28—N4—C24—C25	1(4)
N4—Ni—O1—Zn	-90.2 (5)	Ni—N4—C24—C25	-176 (2)
N1—Ni—O2—C17	-161 (2)	C24—N4—C28—C27	2(6)
01—Ni—02—C17	-165.9 (12)	Ni—N4—C28—C27	178 (4)
N2—Ni—O2—C17	13.3 (12)	O1—C1—C2—C3	-178.2 (15)
N3—Ni—O2—C17	103.3 (11)	C6—C1—C2—C3	0(2)
N4—Ni—O2—C17	-77.5 (12)	O1—C1—C6—C5	179.5 (13)
N1—Ni—O2—Zn	5(3)	C2—C1—C6—C5	1(2)
O1—Ni—O2—Zn	0.1 (5)	O1—C1—C6—C7	-5(2)
N2—Ni—O2—Zn	179.4 (5)	C2—C1—C6—C7	176.8 (14)
N3—Ni—O2—Zn	-90.6 (5)	C4—C3—C2—C1	0(3)

N4—Ni—O2—Zn	88.6 (5)	C5—C4—C3—C2	-2(3)
O2—Ni—N1—C7	-10 (4)	C6—C5—C4—C3	4(3)
01—Ni—N1—C7	-4.2 (13)	C1—C6—C5—C4	-3(2)
N2—Ni—N1—C7	176.7 (13)	C7—C6—C5—C4	-179.2 (16)
N3—Ni—N1—C7	86.3 (13)	N1-C7-C6-C1	8(3)
N4—Ni—N1—C7	-92.7 (13)	N1-C7-C6-C5	-176.2 (15)
O2—Ni—N1—C8	173 (2)	C6—C7—N1—C8	175.4 (15)
O1—Ni—N1—C8	178.4 (12)	C6—C7—N1—Ni	-2(2)
N2—Ni—N1—C8	-0.6 (12)	C10-C9-C8-N1	-78 (2)
N3—Ni—N1—C8	-91.0 (12)	C8—C9—C10—N2	66 (2)
N4—Ni—N1—C8	89.9 (12)	C13-C12-C11-N2	-174.7 (16)
O2—Ni—N2—C11	-9.6 (13)	C17—C12—C11—N2	5(3)
N1—Ni—N2—C11	169.2 (13)	C17—C12—C13—C14	1(2)
N3—Ni—N2—C11	-98.7 (13)	C11-C12-C13-C14	-178.7 (16)
N4—Ni—N2—C11	80.2 (13)	C12-C13-C14-C15	2(3)
O2—Ni—N2—C10	173.0 (14)	C16-C15-C14-C13	-3(3)
N1—Ni—N2—C10	-8.2 (14)	C17-C16-C15-C14	1(2)
N3—Ni—N2—C10	83.9 (14)	C16-C17-C12-C13	-4(2)
N4—Ni—N2—C10	-97.2 (14)	O2-C17-C12-C13	178.2 (13)
O2—Ni—N3—C22	128.7 (12)	C16-C17-C12-C11	176.2 (14)
N1—Ni—N3—C22	-40.5 (12)	O2-C17-C12-C11	-2(2)
O1—Ni—N3—C22	49.1 (12)	O2-C17-C16-C15	-178.8 (14)
N2—Ni—N3—C22	-140.8 (12)	C12-C17-C16-C15	3(2)
O2—Ni—N3—C18	-59.6 (11)	N3-C18-C19-C20	1(3)
N1—Ni—N3—C18	131.3 (11)	C21-C20-C19-C18	0(3)
O1—Ni—N3—C18	-139.1 (11)	C23-C20-C19-C18	-179.5 (19)
N2—Ni—N3—C18	31.0 (12)	C22-C21-C20-C19	-1(3)
O2—Ni—N4—C28	79 (3)	C22-C21-C20-C23	177.8 (18)
N1—Ni—N4—C28	-112 (3)	N3—C22—C21—C20	2(3)
O1—Ni—N4—C28	159 (3)	N4—C24—C25—C26	-2(5)
N2-Ni-N4-C28	-11 (3)	C27—C26—C25—C24	2(5)
O2—Ni—N4—C24	-105.0 (19)	C29—C26—C25—C24	178 (3)
N1—Ni—N4—C24	64 (2)	C25—C26—C27—C28	0(6)
O1—Ni—N4—C24	-25.5 (19)	C29—C26—C27—C28	-176 (4)
N2—Ni—N4—C24	164.4 (19)	C26—C27—C28—N4	-2(8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C14—H14···Br2 ⁱ	0.93	2.93	3.78 (2)	153
C23—H23A···Br1 ⁱⁱ	0.96	2.91	3.79 (3)	153
C24—H24…O1	0.93	2.54	3.09 (4)	118
C28—H28…N2	0.93	2.60	3.18 (4)	121

Symmetry codes: (i) x, -y+1, z-1/2; (ii) x, -y+1, z+1/2.

Fig. 2

